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In these lectures, I intend to present material from two still unpublished papers.
The first lecture will be based on [12], and the second talk will be based on [49].

1 First talk

Systems of connexive logic and the bi-intuitionistic logic BiInt that is also known
as Heyting-Brouwer logic have been carefully studied since the 1960s and 1970s
with various philosophical and mathematical motivations, see [2, 19, 20, 47] and
[29, 30, 31, 13, 8]. The characteristic principles of connexive logic are usually
traced back to Aristotle and Boethius, and the co-implication of BiInt can be
traced back to Skolem [35].

A distinctive feature of connexive logics is that they validate the so-called

Aristotle’s theses: ∼(α→ ∼α) and ∼(∼α→ α), and
Boethius’ theses: (α→ β)→ ∼(α→ ∼β) and (α→ ∼β)→ ∼(α→ β).

An intuitionistic (or constructive) connexive modal logic, CK, which is a con-
structive connexive analogue of the smallest normal modal logic K, was in-
troduced in [43] by extending a certain basic intuitionistic (or constructive)
connexive logic, C, which is a connexive variant of Nelson’s paraconsistent logic
[1, 21, 23, 11].1 A classical connexive modal logic called CS4, which is based
on the positive normal modal logic S4, was introduced in [9] as a Gentzen-type
sequent calculus. The Kripke-completeness and cut-elimination theorems for
CS4 were shown, and CS4 was shown to be embeddable into positive S4 and to
be decidable. Moreover, it was shown in [9] that the basic constructive connex-
ive logic C can be faithfully embedded into CS4 and into a subsystem of CS4
lacking syntactic duality between necessity and possibility.

Heyting-Brouwer logic, which is an extension of both dual-intuitionistic logic,
DualInt, and intuitionistic logic, Int, was introduced by Rauszer [29, 30, 31], who
proved algebraic and Kripke completeness theorems for BiInt. As was shown by
Uustalu in 2003, cf.[27], the original Gentzen-type sequent calculus by Rauszer

1Information on connexive logics can also be found on the web site [26].
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[29] does not enjoy cut-elimination, and various kinds of sequent systems for
BiInt have been presented in the literature, including cut-free display sequent
calculi in [8, 44], see also [28] and [27] for a comparison between sequent calculi
for BiInt. Moreover, BiInt is known to be a logic that has a faithful embedding
into the future-past tense logic KtT4 [14], and a modal logic based on BiInt was
studied by  Lukowski in [15].

Dual-intuitionistic logics are logics which have a Gentzen-type sequent cal-
culus in which sequents have the restriction that the antecedent contains at
most one formula [3, 7, 36]. This restriction of being singular in the antecedent
is syntactically dual to that in Gentzen’s sequent calculus LJ for intuitionistic
logic, which is singular in the consequent. Historically speaking, the logics in
the set of logics containing Czermak’s dual-intuitionistic calculus [3], Goodman’s
logic of contradiction or anti-intuitionistic logic [7], and Urbas’s extensions of
Czermak’s and Goodman’s logics [36] were collectively referred to by Urbas as
dual-intuitionistic logics. The dual-intuitionistic logic referred to as DualInt in
[8, 46] is the implication-free fragment of BiInt. An interpretation of DualInt
as the logic of scientific research was presented by Shramko in [32].

In this talk we combine the two approaches and introduce the bi-intuitionistic
connexive logic (or connexive Heyting-Brouwer logic), BCL, as a Gentzen-type
sequent calculus. The logic BCL may be seen as an extension of the connex-
ive logic C from [43] by the co-implication of BiInt, using a connexive under-
standing of negated co-implications. Another understanding of co-implication
is developed in [46, 48], and a natural deduction proof system and formulas-
as-types notion of construction for a bi-connexive logic 2C that assumes this
understanding of co-implication is presented in [49] and in the second talk.

We will proceed as follows. In a first step, the logic BCL is introduced as a
Gentzen-type sequent calculus, and a dual-valuation-style Kripke semantics for
BCL is defined. BCL is constructed on the basis of Takeuti’s cut-free Gentzen-
type sequent calculus LJ′ for Int. Gentzen-type sequent calculi ICL, DCL, BL,
IL and DL for intuitionistic connexive logic, dual-intuitionistic connexive logic,
bi-intuitionistic logic, intuitionistic logic and dual-intuitionistic logic, respec-
tively, are defined as subsystems of BCL.

In a second step, some theorems for syntactically and semantically embed-
ding BCL into BL are proved, and using these theorems, the completeness
theorem with respect to the Kripke semantics for BCL is shown as a central
result. The cut-elimination theorems for ICL and DCL are shown using some
restricted versions of the syntactical embedding theorem of BCL into BL. The
cut-elimination theorem does not hold for BCL and BL.

Next, some theorems for syntactically embedding ICL into DCL and vice
versa are shown. These theorems reveal that ICL and DCL are syntactically
dual to each other in a certain sense. Thus, it is shown in these theorems that
BCL is constructed based on a duality principle of the characteristic subsystems.

Finally, we present a sound and complete tableau calculus for BCL and its
subsystems ICL, DCL, BL, IL, and DL using triply-signed formulas.
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2 Second talk

In various branches of non-classical logic a distinction is drawn between truth
and falsity as concepts that are primitive and independent of each other, though
not necessarily disconnected. The separation of truth and falsity is achieved by
giving up bivalence, so that falsity is distinguished from the absence of truth and
truth is discriminated from the absence of falsity. In many-valued logic this leads
to a distinction between a set of designated values and a set of antidesignated
values and, moreover, to a multiplicity of entailment relations. In addition to the
familiar preservation of designated values, there is, for example, q-entailment,
“quasi-entailment”, that leads from not-antidesignated premises to a designated
conclusion (see [16, 17, 18]) and p-entailment, “pausibility-entailment”, that
leads from designated premises to a not-antidesignated conclusion (see [5, 6]).
Quasi-entailment and plausibility-entailment are peculiar insofar as entailment
is not defined in terms of preservation of membership in some subset of the set
of truth values (alias truth degrees). In [34, p. 210], preservation of not being
antidesignated from the premises to the conclusion of an inference is listed as an
intuitively appealing notion of entailment. If truth (being designated) and falsity
(being antidesignated) are treated on a par and not as each other’s complement,
then it makes much sense to take falsity-preservation from the premises to the
conclusion of an inference very seriously as well.

In the logic of generalized truth values (see [33, 25], [34]), entailment relations
are defined with respect to a partial order on a set of semantical values, in
particular as relations defined on a set generated from the set 2 of classical truth
values by iterated powerset formation. This approach very naturally leads to
a distinction between a truth ordering and a separate falsity ordering on the
powerset of the powerset of 2 together with two distinct entailment relations,
truth entailment and falsity entailment.2

Whilst usually a notion of falsity is internalized into the logical object
language by means of a negation connective, the notion of truth typically is
not internalized at all. This is only one out of many ways in which “positive”
concepts traditionally predominate even in non-classical logic in comparison to
their “negative” counterparts. It would be possible to consider a formula A
not as a vehicle for making an assertion, but rather as a device for making a
denial. From the latter perspective one would be interested in having available
a unary connective that internalizes truth instead of falsehood. The internal-
ization of truth and falsity can be realized by a division of labour, namely by
using two different negation connectives, or by utilizing a single one that inter-
nalizes both truth from the point of view of falsification and falsity from the
perspective of verification. The former is achieved in the bi-intuitionistic logic
2Int from [46]. In that system two negation operations are defined: intuition-
istic negation and a connective that is in a certain sense dual to intuitionistic
negation. Intuitionistic negation is negation as “implies falsity”; its dual, called
co-negation, is understood as “co-implies truth”. The intuitionistic negation

2Moreover, the subset relation on the set of generalized truth values may be seen as an
information ordering.
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¬A of a formula A internalizes an indirect notion of falsification into the log-
ical object language from the point of view of verification: a state supports
the truth of ¬A iff A implies falsity (iff the assumption that A is true leads
to the truth of the falsity constant ⊥). The co-negation −A of a formula A
internalizes an indirect notion of verification into the object language from the
point of view of falsification: a state supports the falsity of −A iff A co-implies
truth (iff the assumption that A is false leads to the falsity of the truth con-
stant >). The two negations are defined using the zero-place connectives >
and ⊥. One may, however, use a primitive strong negation, ∼, as in Nelson’s
constructive logics with strong negation N3, N4 , and N4⊥ (see, for example,
[21, 22, 1, 38, 39, 4, 40, 42, 24, 23, 10, 11]) that provides both internalizations
and thereby turns dual provability into a relation of disprovability, cf. [45].

Nevertheless, there is a certain preoccupation with the positive dimension of
logic even in Nelson’s systems and a lacuna in the separate treatment of truth
and falsity. The constructive implication in Nelson’s logics internalizes an entail-
ment relation that preserves support of truth from the premises to the conclusion
of an inference or, proof-theoretically, internalizes a corresponding derivability
relation. However, in Nelson’s logics there is no connective that internalizes
the preservation of support of falsity from the premises to the conclusion of an
inference or, proof-theoretically, internalizes a corresponding relation of dual
derivability. Such a dual of implication, called co-implication, is present in the
system 2Int from [46, 48].

In this talk, the bi-intuitionistic system 2Int is modified: a primitive strong
negation is added that internalizes falsity with respect to verification and truth
with respect to falsification. Moreover, for this strong negation a connexive
reading of negated implications and co-implication is assumed, so that 2C also
emerges as an extension of the connexive propositional logic C from [41], which
was obtained from propositional N4 by replacing the familiar falsification con-
dition for negated implications by its connexive version.

The reason for considering connexive implication, →, and connexive co-
implication, −� , instead of assuming the familiar understanding of negated
implications in Nelson’s and other logics is that one obtains a neat encoding of
derivations in the {→,−� ,∼}-fragment of the language under consideration by
typed λ-terms built up from atomic terms of two sorts, one for proofs and one
for dual proofs, using only (i) functional application, (ii) functional abstraction,
and (iii) certain sort/type-shift operations that turn an encoding of a dual proof
of a formula A [respectively ∼A] into an encoding of a proof of ∼A [respectively
A] and that turn an encoding of a proof of a formula A [respectively ∼A] into
an encoding of a dual proof of ∼A [respectively A]. In [37, 39] an encoding of
derivations in Nelsons’s constructive logics with strong negation N3 and N4
was obtained by giving up the unique typedness of terms. The use of terms of
two sorts avoids this feature: every term is uniquely typed.
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