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Extensive games

Definition

An extensive game (with perfect information) has the following
components:

N, a set of players

H, a set of histories or plays

Z , a set of terminal histories or complete plays

P, a function that assigns a player to each nonterminal history

up, a utility function for each player
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Example

An extensive game (with perfect information):

I

uI(a) = 1
uII(a) = 1

a

II

b

uI(b, c) = 2
uII(b, c) = 0

c

uI(b, d) = 0
uII(b, d) = 2

d
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An extensive game form (with perfect information):
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a
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b

c d
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Definition

Hp is the set of histories where it is player p’s move.

If h = (a1, . . . , an), then

A(h) =
{

a : (a1, . . . , an, a) ∈ H
}
.

A strategy for player p is a choice function

σ ∈
∏

h∈Hp

A(h)

that tells the player how to move whenever it is his or her turn.
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Win-lose extensive games

Example

A win-lose extensive game:

I

II

a

II

b

I

c

II

d
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Determined games

Definition

A strategy is winning if its owner wins every terminal history
in which he or she follows it.

A win-lose game is determined if one of the players has a
winning strategy.
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Determined games

Is this game determined?

I

II

a

II

b

I

a

II

b

II

a

I

b
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Is this game determined? YES

I

II

a

II

b

I

a

II

b

II

a

I

b
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Determined games

Theorem (Gale-Stewart)

Every closed game is determined.

Corollary

Every two-player, win-lose, extensive game with perfect information
that has finite horizon (and a unique initial history) is determined.
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Gale-Stewart Theorem
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I

a

I

a

II

b
II

b

I

a

I

b
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b

I

a

I

b
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Subgames

Player I has a winning strategy for the original game if and only if
she has a winning strategy for at least one of these two subgames.

II

I

a

I

a

II

b
II

b

I

a

I

b
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Subgames

Player I has a winning strategy for the original game iff she wins
both sub-subgames on the left or the subgame on the right.

I

I

a

II

b
II

I

a

I

b

II

I

a

I

b

II

c
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Extensive games (with imperfect information)

Definition

An extensive game (with imperfect information) has an additional
indistinguishability relation ∼p for each player.
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An extensive game (with imperfect information):

I

II

a

II

b

I

a

II

b

II

a

I

b
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Extensive games (with imperfect information)

Is it determined?
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II
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II

b

I

a

II

b
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a

I

b
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Extensive games (with imperfect information)

Is it determined? NO

II II

I

a

II

b

II

a

I

b
II II

I

a

II

b
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a

I

b
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Strategic games

Definition

A strategic game has the following components:

N, a set of players

Sp, a set of (pure) strategies for each player

up, a utility function for each player
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Stag Hunt

Example

Player III = stag

stag hare

stag 2, 2, 2 0, 1, 0

hare 1, 0, 0 1, 1, 0

Player III = hare

stag hare

stag 0, 0, 1 0, 1, 1

hare 1, 0, 1 1, 1, 1
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Prisoners’ Dilemma

quiet fink

quiet −1, −1 −4, 0

fink 0, −4 −3, −3
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Strictly competitive

Definition

A two-player game is strictly competitive if for all σ, σ′ ∈ SI and
τ, τ ′ ∈ SII we have

uI(σ, τ) ≤ uI(σ
′, τ ′) iff uII(σ, τ) ≥ uII(σ

′, τ ′).
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Matching Pennies

heads tails

heads 1, −1 −1, 1

tails −1, 1 1, −1

Allen L. Mann Game Theory



Extensive games
Strategic games

Pure strategies
Mixed strategies
Minimax theorem

Matching Pennies

heads tails

heads 1, −1 −1, 1

tails −1, 1 1, −1

Allen L. Mann Game Theory



Extensive games
Strategic games

Pure strategies
Mixed strategies
Minimax theorem

Mixed strategies

Definition

A mixed strategy for player p is a probability distribution over
Sp.

The expected utility function for player p is

Up(µ, ν) =
∑
σ∈SI

∑
τ∈SII

µ(σ) ν(τ) up(σ, τ).
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Mixed equilibrium

T ,H

H,H

T ,T

H,T

I

II

Allen L. Mann Game Theory



Extensive games
Strategic games

Pure strategies
Mixed strategies
Minimax theorem

Mixed equilibrium

T ,H

H,H

T ,T

H,T

I

II

Allen L. Mann Game Theory



Extensive games
Strategic games

Pure strategies
Mixed strategies
Minimax theorem

Mixed equilibrium

Definition

A pair (µ∗, ν∗) of mixed strategies is an equilibrium if:

UI(µ, ν
∗) ≤ UI(µ

∗, ν∗) for every mixed strategy µ ∈ ∆(SI),

UII(µ
∗, ν) ≤ UII(µ

∗, ν∗) for every mixed strategy ν ∈ ∆(SII).

Allen L. Mann Game Theory



Extensive games
Strategic games

Pure strategies
Mixed strategies
Minimax theorem

Mixed equilibrium

Definition

A pair (µ∗, ν∗) of mixed strategies is an equilibrium if:

UI(µ, ν
∗) ≤ UI(µ

∗, ν∗) for every mixed strategy µ ∈ ∆(SI),

UII(µ
∗, ν) ≤ UII(µ

∗, ν∗) for every mixed strategy ν ∈ ∆(SII).

Allen L. Mann Game Theory



Extensive games
Strategic games

Pure strategies
Mixed strategies
Minimax theorem

Multiple equilibria

Theorem

If (µ, ν) and (µ′, ν ′) are two mixed equilibria for a strictly
competitive game, then Up(µ, ν) = Up(µ′, ν ′).

Proof.

If (µ, ν) and (µ′, ν ′) are both equilibria, then

UI(µ, ν) ≤ UI(µ, ν
′) ≤ UI(µ

′, ν ′) ≤ UI(µ
′, ν) ≤ UI(µ, ν).

Hence UI(µ, ν) = UI(µ
′, ν ′). Similarly, UII(µ, ν) = UII(µ

′, ν ′).
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Minimax theorem

Theorem (Von Neumann)

Every finite, two-player, zero-sum game has an equilibrium in
mixed strategies.

Definition

The value of such a game is UI (µ
∗, ν∗), where (µ∗, ν∗) is any

equilibrium.
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Identifying equilibria

Theorem

In a finite two-player game, a pair of mixed strategies (µ∗, ν∗) is an
equilibrium if:

UI(µ
∗, ν∗) = UI(σ, ν

∗) for every σ in the support of µ∗,

UI(µ
∗, ν∗) ≥ UI(σ, ν

∗) for every σ not in the support of µ∗,

UII(µ
∗, ν∗) = UII(µ

∗, τ) for every τ in the support of ν∗,

UII(µ
∗, ν∗) ≥ UII(µ

∗, τ) for every τ outside the support of ν∗.
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